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VPython is the Python programming language plus a 3D graphics module called "Visual"
originated by David Scherer in 2000. This documentation describes all of the Visual
capabilities. This translation is consistent with the version 5.0.3 of VPython.
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Simple 3D Programming Using VPython

I - VPython: the Python/ Visual / IDLE environment

The interactive development environment you will use is
called "IDLE."
The Display window
When using VPython the display window shows objects in
3D.
(0,0,0) is in the center of the display window . The +x axis
runs to the right, the +y axis runs up, and the +z axis points
out of the screen, toward you.
x, y, and z are measured in whatever units you choose; the
display is automatically scaled appropriately. (You could,
for example, create a sphere with a radius of 1E-15 m to
represent a nucleus, or a sphere with a radius of 1E6 m to
represent a planet, though it wouldn't make sense to put
both of these objects in the same display!)

The Output window
The output of any -print- statements you execute in your program goes to the Output window, which is a scrolling
text window. You can use this window to print values of variables, print lists, print messages, etc. Place it where you
can see messages in it.

The Code window
If you type or copy the following simple program into the
code window in IDLE and run it (press F5, or use the Run
menu), you will see a display like the one shown in the
figure.

from visual import *
redbox=box(pos=vector(4,2,3),
           size=(8,4,6),color=color.red)
ball=sphere(pos=vector(4,7,3),radius=2,color=color.green)

Visual is the name of the 3D graphics module used with the
Python programming language. VPython is the name of
the combination of the Python programming language, the
Visual module, and the development environment IDLE.
Viewing the scene
In the display window, click and drag with the right mouse
button (hold down the command key on a Macintosh).
Drag left or right, and you rotate around the scene. To
rotate around a horizontal axis, drag up or down. Click and
drag up or down with the middle mouse button to move
closer to the scene or farther away (on a 2-button mouse,
hold down the left and right buttons; on a 1-button mouse,
hold down the Option key).

II - Visual Entities

Objects, names, and attributes
The graphical objects you create, such as spheres, boxes, and curves, continue to exist for the duration of your
program, and the Visual 3D graphics module will continue to display them, wherever they are. You must give each

http://www.developpez.com
http://guigui.developpez.com/cours/python/vpython/en/


The Visual Module of VPython - Reference Manual par

- 4 -
http://guigui.developpez.com/cours/python/vpython/en/

object a name (such as redbox or ball in the example above) if you wish to refer to it again later in your program.
All objects have attributes: properties like ball.pos (the position of the sphere), ball.color, and radius or other size
parameter. If you change an attribute of an object, such as its position or color, Visual will automatically display the
object in its new location, or with its new color.
You can set the values of attributes in the "constructor" (the code used to create the object), and you can also modify
attributes later:

ball.radius = 2.2

In addition to the built-in set of attributes, you may create new attributes. For example, you might create a sphere
named moon; in addition to its radius and location, you might give it attributes such as mass (moon.mass) and
momentum (moon.momentum).
Vectors
Not all objects in Visual are visible objects. For example, Visual allows you to create 3D vector quantities, and to
perform vector operations on them. If you create a vector quantity called a, you may refer to its components as a.x,
a.y, and a.z. To add two vectors, a and b, however, you do not need to add the components one by one; Visual will
do the vector addition for you:

a = vector(1,2,3)
b = vector(4,5,6)
c=a+b

If you print c , you will find that it is a vector with components (5, 7, 9).
Scalar multiplication

d = 3*a # d is a vector with components (3, 6, 9)

Vector magnitude

s = mag(c) # s is a scalar
z = mag(c)**2 # you can square the magnitude of a vector

Vector products

f = cross(a,b) # cross product
g = dot(a,b) # dot product
h = norm(a) # normalized (unit) vector; a/mag(a) 

The attributes of Visual objects can be vectors, such as velocity or momentum.

III - Simple Python Programming

Importing the 3D Graphics Module (Visual)
The first line of your program must be:

from visual import *

Comments
A comment in a Python program starts with "#"

# this line is a comment

http://www.developpez.com
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Variables
Variables can be created anywhere in a Python program, simply by assigning a variable name to a value. The type
of the variable is determined by the assignment statement.

a = 3 # an integer
b = -2. # a floating-point number
c = vector(0.4, 3e3, -1e1) # a vector
Earth = sphere(pos=(0,0,0), radius=6.4e6) # an object
bodies = [ship, Earth, Moon] # a list of objects

Basic Visual objects such as sphere() and box() have a set of "attributes" such as color, and you can define additional
attributes such as mass or velocity. Other objects, such as vector(), have built-in attributes but you cannot create
additional attributes.
Warning about division
Division of integers will not come out the way you may expect, since the result is rounded down to the nearest integer.
Thus:

a = 3/4 
print a # a is 0

To avoid this, you can place a decimal point after every number, like this:

b = 3./4. 
print b # b is 0.75, as expected

We recommend putting the following statement as the first line of your program, in which case 3/4 will be 0.75; there
are two underscores before the word "future" and two after the word "future":

from __future__ import division

Exponentiation

x**2 # Not x^2, which is a bit operation in Python

Logical Tests
If, elif ("else if"), else:

if a == b: # see table of logical expressions below
    c = 3.5 # indented code executed if test is true
elif a < b:
    c = 0 # c will be set to zero only if a < b
else:
    c = -23.2

Logical expressions
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== equal
!= not equal
< less than
> greater than
<= less than or equal
>= greater or equal
or logical or
and logical and
in member of a sequence
not in not sequence member

Lists
A list is an ordered sequence of any kind of object. It is delimited by square brackets.

moons = [Io, Europa, Ganymede, Callisto]

The function "arange" (short for "arrayrange") creates an array of numbers:

angles = arange (0., 2*pi, pi/100) 
# from 0 to 2*pi-(pi/100) in steps of (pi/100)

numbers = arange(10) # integer argument -> integers
print numbers # [0,1,2,3,4,5,6,7,8,9] 

Loops
The simplest loop in Python is a "while" loop. The loop continues as long as the specified logical expression is true:

while x < 23:
    x = x + vx*dt

To write an infinite loop, just use a logical expression that will always be true:

while 1==1:
    ball.pos = ball.pos + (ball.momentum/ball.mass)*dt

Since the value assigned to a true logical expression is 1, the following also produces an infinite loop:

while 1:
    a = b+c

You can also use the Python symbols True or False:

while True:
    a = b+c

Infinite loops are ok, because you can always interrupt the program by choosing "Stop Program" from the Run menu
in IDLE.
It is also possible to loop over the members of a sequence:

moons = [Io, Europa, Ganymede, Callisto]
for a in moons:
    r = a.pos - Jupiter.pos
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for x in arange(10):
# see "lists" above
...
  
for theta in arange(0., 2.*pi, pi/100.): 
# see "lists" above

You can restart a loop, or terminate the loop prematurely:

if a == b: continue # go back to the start of the loop
if a > b: break # exit the loop

Printing results
To print a number, a vector, a list, or anything else, use the "print" option:

print Europa.momentum

To print a text message, enclose it in quotes:

print "We crashed on the Moon with speed", v, "m/s."

Python also offers a formatted print capability. Here price will be printed with 3 digits before the decimal place and
2 digits after, and num will be printed as an integer:

print "It's $%3.2f dollars for %d copies" % (price,num)

More Information about Python
We have summarized a small but important subset of the Python programming language. Extensive Python

documentation is provided on the Help menu in IDLE, and there is additional information at the Python website,
but much of this information assumes that you already have lots of programming experience in other languages. We
recommend the following book to those who want to learn more about Python, and about programming in general:
Python Programming: An Introduction to Computer Science by John M. Zelle (Franklin Beedle & Associates, 2003).
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3D objects

arrow

The arrow object has a straight box-shaped shaft with an arrowhead at one end. The following statement will display
an arrow pointing parallel to the x axis:

pointer = arrow(pos=(0,2,1), axis=(5,0,0), shaftwidth=1)

The arrow object has the following attributes and default values, like those for cylinders: pos (0,0,0), x (0), y(0), z(0),
axis (1,0,0), length (1), color (1,1,1) which is color.white, red (1), green (1), blue (1), opacity (1), material, and up
(0,1,0). As with box, the up attribute is significant for arrow because the shaft and head have square cross sections,
and setting the up attribute rotates the arrow about its axis. Additional arrow attributes:
shaftwidth By default, shaftwidth = 0.1*(length of arrow)
headwidth By default, headwidth = 2*shaftwidth
headlength By default, headlength = 3*shaftwidth
Assigning any of these attributes to 0 makes it use defaults based on the size of the arrow. If headlength becomes
larger than half the length of the arrow, or the shaft becomes thinner than 1/50 the length, the entire arrow is scaled
accordingly.
This default behavior makes the widths of very short arrows shrink, and the widths of very long arrows grow (while
displaying the correct total length). If you prefer that shaftwidth and headwidth not change as the arrow gets very
short or very long, set fixedwidth = 1. In this case the only adjustment that is made is that headlength is adjusted
so that it never gets longer than half the total length, so that the total length of the arrow is correct. This means that
very short, thick arrows look similar to a thumbtack, with a nearly flat head.
Note that the pos attribute for cylinder, arrow, cone, and pyramid corresponds to one end of the object, whereas for
a box, sphere, or ring it corresponds to the center of the object.
See description of Additional Attributes available for all 3D display objects.
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box

In the first diagram we show a simple example of a box object:

mybox = box(pos=(x0,y0,z0), length=L, height=H, width=W) 

The given position is in the center of the box, at (x0, y0, z0). This is different from cylinder, whose pos attribute is at one
end of the cylinder. Just as with a cylinder, we can refer to the individual vector components of the box as mybox.x,
mybox.y, and mybox.z. The length (along the x axis) is L , the height (along the y axis) is H , and the width is W (along
the z axis). For this box, we have mybox.axis = (L, 0, 0) . Note that the axis of a box is just like the axis of a cylinder.

http://www.developpez.com
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For a box that isn't aligned with the coordinate axes, additional issues come into play. The orientation of the length
of the box is given by the axis (see second diagram):

mybox = box(pos=(x0,y0,z0), axis=(a,b,c), length=L, height=H, width=W) 

The axis attribute gives a direction for the length of the box, and the length, height, and width of the box are given as
before (if a length attribute is not given, the length is set to the magnitude of the axis vector).
There remains the issue of how to orient the box rotationally around the specified axis. The rule that Visual uses is to
orient the width to lie in a plane perpendicular to the display "up" direction, which by default is the y axis. Therefore in
the diagram you see that the width lies parallel to the x-z plane. The height of the box is oriented perpendicular to the
width, and to the specified axis of the box. It helps to think of length initially as going along the x axis, height along
the y axis, and width along the z axis, and when the axis is tipped the width stays in the x-z plane.
You can rotate the box around its own axis by changing which way is "up" for the box, by specifying an up attribute
for the box that is different from the up vector of the coordinate system:

mybox = box(pos=(x0,y0,z0), axis=(a,b,c), length=L, height=H, width=W, up=(q,r,s))

With this statement, the width of the box will lie in a plane perpendicular to the (q,r,s) vector, and the height of the
box will be perpendicular to the width and to the (a,b,c) vector.
The box object has the following attributes and default values, like those for cylinders: pos (0,0,0), x (0), y(0), z(0),
axis (1,0,0), length (1), color (1,1,1) which is color.white, red (1), green (1), blue (1), opacity (1), material, and
up (0,1,0). Additional box attributes:
height In the y direction in the simple case, default is 1
width In the z direction in the simple case, default is 1
size (length, height, width), default is (1,1,1)
      mybox.size=(20,10,12) sets length=20, height=10, width=12
Note that the pos attribute for cylinder, arrow, cone, and pyramid corresponds to one end of the object, whereas for
a box, sphere, or ring it corresponds to the center of the object.
See description of Additional Attributes available for all 3D display objects.

cone
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The cone object has a circular cross section and tapers to a point. The following statement will display a cone with the
center of its circular base at (5,2,0), pointing parallel to the x axis with length 12; the wide end of the cone has radius 1:

cone(pos=(5,2,0), axis=(12,0,0), radius=1)

The cone object has the following attributes and default values, like those for cylinders: pos (0,0,0), x (0), y(0), z(0),
axis (1,0,0), length (1), color (1,1,1) which is color.white, red (1), green (1), blue (1), opacity (1), material, and up
(0,1,0). As with cylinders, up has only a subtle effect on the 3D appearance of a cone unless a non-smooth material
is specified. Additional cone attribute:
radius Radius of the wide end of the cone, default = 1
Note that the pos attribute for cylinder, arrow, cone, and pyramid corresponds to one end of the object, whereas for
a box, sphere, or ring it corresponds to the center of the object.
See description of Additional Attributes available for all 3D display objects.

convex

The convex object takes a list of points for pos, like the curve object. An object is generated that is everywhere convex
(that is, bulges outward). Any points that would make a portion of the object concave (bulge inward) are discarded.
If all the points lie in a plane, the object is a flat surface.
Currently it is not possible to specify the opacity of a convex object.
See description of Additional Attributes available for all 3D display objects.

curve

The curve object displays straight lines between points, and if the points are sufficiently close together you get the
appearance of a smooth curve. In addition to its basic use for displaying curves, the curve object has powerful
capabilities for other uses, such as efficient plotting of functions.
Some attributes, such as pos and color, can be different for each point in the curve. These attributes are stored as
numpy arrays. The numpy module for Python provides powerful array processing capabilities; for example, two entire
arrays can be added together. Numpy arrays can be accessed using standard Python rules for referring to the nth
item in a sequence (that is, seq[0] is the first item in seq, seq[1] is the second, seq[2] is the third, etc). For example,
anycurve.pos[0] is the position of the first point in anycurve.
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You can give curve an explicit list of coordinates enclosed in brackets, like all Python sequences. Here is an example
of a 2D square:

square = curve(pos=[(0,0),(0,1),(1,1),(1,0),(0,0)])

Essentially, (1,1) is shorthand for (1,1,0). However, you cannot mix 2D and 3D points in one list.
Curves can have thickness, specified by the radius of a cross section of the curve (the curve has a thickness or
diameter that is twice this radius):

curve(pos=[(0,0,0), (1,0,0), (2,1,0)], radius=0.05)

The default radius is 0, which draws a thin curve. A nonzero radius makes a "thick" curve, but a very small radius
may make a curve that is too thin to see.
In the following example, the arange() function (provided by the Python numpy module, which is imported by the
Visual module, gives a sequence of values from 0 to 20 in steps of 0.1 (not including the last value, 20).

c = curve( x = arange(0,20,0.1) ) # Draw a helix
c.y = sin( 2.0*c.x )
c.z = cos( 2.0*c.x )

The x, y, and z attributes allow curves to be used to graph functions easily:

curve( x=arange(100), y=arange(100)**0.5, color=color.red)

A function grapher looks like this (a complete program!), where "raw_input" is a Python function that accepts input
typed in the Python Shell window:

eqn = raw_input('Equation in x: ')
x = arange( 0, 10, 0.1 )
curve( x=x, y=eval(eqn) )

Parametric graphing is also easy:

t = arange(0, 10, 0.1)
curve( x = sin(t), y = 1.0/(1+t), z = t**0.5, red = cos(t), green = 0, blue = 0.5*(1-cos(t)) )

Here are the curve attributes:
pos[] Array of position of points in the curve: pos[0], pos[1], pos[2]....
The current number of points is given by len(curve.pos)
x[ ], y[ ], z[ ] Components of pos; each defaults to [0,0,0,0,...]
color[ ] Color of points in the curve
red[ ], green[ ], blue[ ] Color components of points in the curve
radius Radius of cross-section of curve
The default radius=0 makes a thin curve
material Material for a thick curve; see Materials for currently available options
Currently it is not possible to specify the opacity of a curve object.
Adding more points to a curve
Curves can be created incrementally with the append() function. A new point by default shares the characteristics
of the last point.

spiral = curve( color = color.cyan )
for t in arange(0, 2*pi, 0.1):
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    spiral.append( pos=(t,sin(t),cos(t)) )

One of the many uses of curves is to leave a trail behind a moving object. For example, if ball is a moving sphere,
this will add a point to its trail:

trail = curve()
ball = sphere()
# .... Every time you update the position of the ball:
trail.append(pos=ball.pos)

When appending to a curve, you can optionally choose to retain only the last N points, including the one you're adding:

trail.append(pos=ball.pos, retain=50) # last 50 points

Interpolation
The curve machinery interpolates from one point to the next. For example, suppose the first three points are red but
the fourth point is blue, as in the following example. The lines connecting the first three points are all red, but the line
going from the third point (red) to the fourth point (blue) is displayed with a blend going from red to blue.

c = curve( pos=[(0,0,0), (1,0,0)], color=color.red)
c.append( pos=(1,1,0) ) # add a red point
c.append( pos=(0,1,0), color=color.blue) # add blue point

If you want an abrupt change in color or thickness, add another point at the same location. In the following example,
adding a blue point at the same location as the third (red) point makes the final line be purely blue.

c = curve( pos=[(0,0,0), (1,0,0)], color=color.red)
c.append( pos=(1,1,0) ) # add a red point
c.append( pos=(1,1,0), color=color.blue) # same point
c.append( pos=(0,1,0) ) # add blue point

Technical note: No matter how many points are in a curve, only 1000 are displayed, selected evenly over the full set
of points, in order that the display of a very long curve doesn't slow down unacceptably.
See description of Additional Attributes available for all 3D display objects.
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cylinder

Studying this description of the cylinder object provides an overview of important aspects common to all of
the Visual 3D objects, box, sphere, pyramid, etc.
Here is an example of how to make a cylinder, naming it "rod" for future reference:

rod = cylinder(pos=(0,2,1), axis=(5,0,0), radius=1)

The center of one end of this cylinder is at x=0, y=2, and z=1. Its axis lies along the x axis, with length 5, so that the
other end of the cylinder is at (5,2,1), as shown in the accompanying diagram.
You can modify the position of the cylinder after it has been created, which has the effect of moving it immediately
to the new position:

rod.pos = (15,11,9) # change (x,y,z)
rod.x = 15 # only change pos.x

If you create an object such as a cylinder but without giving it a name such as rod, you can't refer to it later. This
doesn't matter if you never intend to modify the object.
Since we didn't specify a color, the cylinder will be the current "foreground" color (see Controlling One or More
Visual Display Windows). The default foreground color is white. After creating the cylinder, you can change its color:

rod.color = (0,0,1) # make rod be blue

This will make the cylinder suddenly turn blue, using the so-called RGB system for specifying colors in terms of
fractions of red, green, and blue. (For details on choosing colors, see Specifying Colors.) You can set individual
amounts of red, green, and blue like this:

rod.red = 0.4
rod.green = 0.7
rod.blue = 0.8
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The cylinder object can be created with other, optional attributes, which can be listed in any order. Here is a full list
of attributes, most of which also apply to other objects:
pos Position: the center of one end of the cylinder; default = (0,0,0)
A triple, in parentheses, such as (3,2,5)
axis The axis points from pos to the other end of the cylinder, default = (1,0,0)
x, y, z Essentially the same as pos.x, pos.y, pos.z, defaults are all 0
radius The radius of the cylinder, default = 1
length Length of axis; if not specified, axis determines the length, default = 1
If length is specified, it overrides the length given by axis
color Color of object, as a red-green-blue (RGB) triple: (1,0,0) is pure red, default = (1,1,1), which is color.white
red, green, blue (can set these color attributes individually), defaults are all 1
opacity Opacity of object, default = 1; 0 is completely transparent
material Material of object; see Materials for currently available options
up Which side of the cylinder is "up"; this has only a subtle effect on the 3D appearance of the cylinder unless a non-
smooth material is specified; default (0,1,0)
Note that the pos attribute for cylinder, arrow, cone, and pyramid corresponds to one end of the object, whereas for
a box, sphere, or ring it corresponds to the center of the object.
See description of Additional Attributes available for all 3D display objects.
When you start a VPython program, for convenience Visual creates a display window and names it scene. By default,
objects that you create go into that display window. See Controlling One or More Visual Display Windows later in
this reference for how you can create additional display windows and place objects in them.

ellipsoid

A long ellipsoid object looks like a cigar; a short one looks like somewhat like a pill. Its cross sections are circles or
ellipses. The elllipsoid object has the same attributes as the box object and it can be thought of as fitting inside a
box of the same dimensions:

myell = ellipsoid(pos=(x0,y0,z0), length=L, height=H, width=W) 

The given position is in the center of the ellipsoid, at (x0, y0, z0). This is different from cylinder, whose pos attribute
is at one end of the cylinder. Just as with a cylinder, we can refer to the individual vector components of the ellipsoid
as myell.x, myell.y, and myell.z. The length from end to end (along the x axis) is L , the height (along the y axis)
is H , and the width is W (along the z axis). For this ellipsoid, we have myell.axis = (L, 0, 0) . Note that the axis of
an ellipsoid is just like the axis of a cylinder.
For an ellipsoid that isn't aligned with the coordinate axes, additional issues come into play. The orientation of the
length of the ellipsoid is given by the axis (see diagrams shown with the documentation on the box object):

myell = ellipsoid(pos=(x0,y0,z0), axis=(a,b,c), length=L, height=H, width=W) 

The axis attribute gives a direction for the length of the ellipsoid, and the length, height, and width of the ellipsoid are
given as before (if a length attribute is not given, the length is set to the magnitude of the axis vector).
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The ellipsoid object has the following attributes and default values, like those for cylinders: pos (0,0,0), x (0), y(0),
z(0), axis (1,0,0), length (1), color (1,1,1) which is color.white, red (1), green (1), blue (1), opacity (1), material,
and up (0,1,0). Additional attributes, similar to those for a box:
height In the y direction in the simple case, default is 1
width In the z direction in the simple case, default is 1
size (length, height, width), default is (1,1,1)
myell.size=(20,10,12) sets length=20, height=10, width=12
Note that the pos attribute for cylinder, arrow, cone, and pyramid corresponds to one end of the object, whereas for
an ellipsoid, box, sphere, or ring it corresponds to the center of the object.
See description of Additional Attributes available for all 3D display objects.

faces

The "faces" primitive takes a list of triangles (position, color, and normal for each vertex). This is useful for writing
routines in Python to import 3D models made with other 3D modeling tools. You would still need to do lots of
calculations of normals and so on, but you would not need to do C coding to import an arbitrary model file.
The faces object is an array primitive (like curve, convex, etc), so you have to use a frame to move it around. It
consists of a set of one-sided triangles with user-specified vertices, colors, and normals. The pos, color, and normal
attributes look like this:

pos = [ t0v0, t0v1, t0v2, 
        t1v0, t1v1, t1v2, 
        t2v0, t2v1, t2v2, ... ] 

where t0v0 is the position of vertex 0 of triangle 0, t0v1 is vertex 1 of triangle 0, etc.
Each face is a one-sided surface. Which side is illuminated is determined by the "winding" order of the face. When
you are looking at a face, it is illuminated if the order of the vertices in the pos list goes counter-clockwise. If you need
the triangle to be visible from either side, you must create another triangle with the opposite winding order.
If you don't specify normals at the vertices, the face is illuminated only by "ambient" light. In order for the main lighting
to affect the appearance, you must specify normals to the surface at the vertices. In the simplest case, a normal
at a vertex is perpendicular to the face, and adjoining faces have a hard edge where they join. A soft edge can be
produced by averaging the normals to the two faces at their common vertices. The brightness of a face is proportional
to the cosine of the angle between the normal and the light.
If you specify different colors at the vertices of one triangular face, VPython interpolates across the face, in which case
the face is not all one color. There is a similar interpolation for normals if there are different normals at the vertices,
in which case the face is not all one brightness.
The faces object is intended to help with writing model importers and other new primitives in Python, not for direct
manipulation by normal programs. It is considerably lower-level than any of the other objects in Visual (although it is
not necessarily any faster, at least right now). It is flexible enough to implement smooth or facet shading, per-vertex
coloration, two-sided or one-sided lighting, etc, but all of these calculations must be made by the programmer (when
setting up pos, color, normal).
You can specify a material, but currently you can not specify opacity for faces.
See description of Additional Attributes available for all 3D display objects.
For examples of the use of the faces object, see the faces demo programs.
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frame

Composite Objects with frame
You can group objects together to make a composite object that can be moved and rotated as though it were a single
object. Create a frame object, and associate objects with that frame:

f = frame()
cylinder(frame=f, pos=(0,0,0), radius=0.1, length=1, color=color.cyan)
sphere(frame=f, pos=(1,0,0), radius=0.2, color=color.red)
f.axis = (0,1,0) # change orientation of both objects
f.pos = (-1,0,0) # change position of both objects

By default, frame() has a position of (0,0,0) and axis in the x direction (1,0,0). The cylinder and sphere are created
within the frame. When any of the frame attributes are changed (pos, x, y, z, axis, or up), the composite object is
reoriented and repositioned.
You can make all the objects in a frame invisible or visible by setting the frame's visible attribute.
Another frame attribute is objects, which is a list of currently visible objects contained in the frame (the list does not
include objects that are currently invisible, not lights, which are found in scene.lights). If you want to make all the
objects in a frame be red, do the following (assume the frame is named f):

for obj in f.objects:
    obj.color = color.red

If you use this method to make all the objects invisible, the f.objects list will be empty. If you need a list containing all
the objects, both visible and invisible, you need to maintain your own list of objects.
If ball is an object in a frame, ball.pos is the position local to the frame, not the actual position in "world space". Here
is a routine that will calculate the position of a vector such as ball.pos in world space:

def world_space_pos(frame, local):
"""Returns the position of local in world space."""
    x_axis = norm(frame.axis)
    z_axis = norm(cross(frame.axis, frame.up))
    y_axis = norm(cross(z_axis, x_axis))
    return

frame.pos+local.x*x_axis+local.y*y_axis+local.z*z_axis

helix

The following statement will display a helix that is parallel to the x axis:

spring = helix(pos=(0,2,1), axis=(5,0,0), radius=0.5)
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The helix object has the following attributes and default values: pos (0,0,0), x (0), y(0), z(0), axis (1,0,0), length (1),
radius (1), coils (5), thickness (radius/20), color (1,1,1) which is color.white, red (1), green (1), blue (1), material,
and up (0,1,0).
Note that the pos attribute for cylinder, arrow, cone, pyramid, and helix corresponds to one end of the object, whereas
for a box, sphere, or ring it corresponds to the center of the object.
Currently it is not possible to specify the opacity of a helix object, which is based on the curve object.
See description of Additional Attributes available for all 3D display objects.

label

With the label object you can display text in a box. Here are simple examples (in the second label statement, note
the standard Python scheme for formatting numerical values, where 1.5f means 1 figure before the decimal point
and 5 after):

box(pos=(0,0,0), color=color.red)
label(pos=(0,0.25,0), text='This is a box')
label(pos=(0,-0.25,0), text='pi = %1.5f' % pi) 

There are many additional label options. In the accompanying diagram, a sphere representing the Earth (whose
center is at earth.pos) has an associated label with the text "Earth" in a box, connected to the sphere by a line which
stops at the surface of the sphere:

earthlabel = label(pos=earth.pos, text='Earth', xoffset=20, yoffset=12, space=earth.radius, height=10,
 border=6, font='sans')

A unique feature of the label object is that several attributes are given in terms of screen pixels instead of the usual
"world-space" coordinates. For example, the height of the text is given in pixels, with the result that the text remains
readable even when the sphere object is moved far away. Other pixel-oriented attributes include xoffset, yoffset,
and border. Here are the label attributes:
pos; x,y,z The point in world space being labeled. If there are no offsets (see diagram), the center of the text is at pos
xoffset, yoffset The x and y components of the line, in pixels (see diagram). You can left justify text by setting xoffset
= 1 and line = 0 (so the 1-pixel line doesn't show), or right-justify text by setting xoffset = -1 and line = 0. text The
text to be displayed, such as 'Earth'
(Line breaks can be included as \n, as in label.text = "Three\nlines\nof text")
font Name of the desired font; for example, 'sans', or 'serif', or 'monospace' (fixed-width)
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Python Unicode strings are supported.
height Height of the font in pixels; default is 13 pixels
color, red, green, blue Color of the text
opacity Opacity of the background of the box, default 0.66
(0 transparent, 1 opaque, for objects behind the box)
border Distance in pixels from the text to the surrounding box; default is 5 pixels
box 1 if the box should be drawn (default), else 0
line 1 if the line from the box to pos should be drawn (default), else 0
linecolor Color of the line and box
space World-space radius of a sphere surrounding pos,
into which the connecting line does not go
See description of Additional Attributes available for all 3D display objects.

points

The points object takes a list of points for pos, like the curve object. The following statement will display two points,
each of radius 50 pixels:

points(pos=[(-1,0,0), (1,0,0)], size=50, color=color.red)

A new points object is similar to a curve, but with disconnected points. As with curve, the pos attribute is an
array of points, and color can also be an array. If you say shape="round", the points are round, which is the
default; shape="square" makes square points. The size of the points is specified by size, and the default size is
5 (meaning a square 5 by 5, or a circular disk bounded by a 5 by 5 square). The size attribute is in screen pixels if
size_units="pixels" (the default), but if size_units="world", the size is in the usual coordinates. The maximum size
of a point is about 50 by 50 pixels; specifying a larger size than the maximum does not increase the size.
Lighting does not affect the appearance, which is determined solely by the color. You cannot specify a material for
points, and currently it is not possible to specify the opacity of a points object.
See description of Additional Attributes available for all 3D display objects.
Technical caveat: size_units="world" may not work on very old video drivers which do not support OpenGL 1.4 or the
ARB_POINT_PARAMETERS extension. If you have problems, upgrade your video driver.
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pyramid

The pyramid object has a rectangular cross section and tapers to a point. The following statement will display a
pyramid with the center of the rectangular base at (5,2,0), pointing parallel to the x axis with a base that is 6 high (in
y), 4 wide (in z), and with a length 12 from base to tip:

pyramid(pos=(5,2,0), size=(12,6,4))

The pyramid object has the following attributes and default values, like those for cylinders: pos which is the center
of the rectangular base (0,0,0), x (0), y(0), z(0), axis (1,0,0), length (1), color (1,1,1) which is color.white, red (1),
green (1), blue (1), opacity (1), material, and up (0,1,0). Additional pyramid attributes:
height In the y direction in the simple case, default is 1
width In the z direction in the simple case, default is 1
size (length, height, width), default is (1,1,1)
mypyramid.size=(20,10,12) sets length=20, height=10, width=12
Note that the pos attribute for cylinder, arrow, cone, and pyramid corresponds to one end of the object, whereas for
a box, sphere, or ring it corresponds to the center of the object.
See description of Additional Attributes available for all 3D display objects.

ring

The ring object is circular, with a specified radius and thickness and with its center given by the pos attribute:

http://www.developpez.com
http://guigui.developpez.com/cours/python/vpython/en/
http://guigui.developpez.com/cours/python/vpython/en/?page=workobject#Lmaterialtexture
http://guigui.developpez.com/cours/python/vpython/en/?page=workobject#Lsuppattribut


The Visual Module of VPython - Reference Manual par

- 21 -
http://guigui.developpez.com/cours/python/vpython/en/

ring(pos=(1,1,1), axis=(0,1,0), radius=0.5, thickness=0.1)

The ring object has the following attributes and default values, like those for cylinders: pos (0,0,0), x (0), y(0), z(0),
axis (1,0,0), length (1), color (1,1,1) which is color.white, red (1), green (1), blue (1), opacity (1), material, and
up (0,1,0). As with cylinders, up has a subtle effect on the 3D appearance of a ring unless a non-smooth material is
specified. The axis attribute only affects the orientation of the ring; the magnitude of the axis attribute is irrelevant.
Additional ring attributes:
radius Radius of the central part of the ring, default = 1, so
        outer radius = radius+thickness
        inner radius = radius-thickness
thickness The radius of the cross section of the ring (1/10th of radius if not specified), not the full diameter as you
might expect.
Note that the pos attribute for cylinder, arrow, cone, and pyramid corresponds to one end of the object, whereas for
a ring, sphere, and box it corresponds to the center of the object.
See description of Additional Attributes available for all 3D display objects.

sphere

Here is an example of how to make a sphere:

ball = sphere(pos=(1,2,1), radius=0.5)

This produces a sphere centered at location (1,2,1) with radius = 0.5, with the current foreground color.
The sphere object has the following attributes and default values, like those for cylinders except that there is no length
attribute: pos (0,0,0), x (0), y(0), z(0), axis (1,0,0), color (1,1,1) which is color.white, red (1), green (1), blue (1),
opacity (1), material, and up (0,1,0). As with cylinders, up and axis attributes affect the orientation of the sphere
but have only a subtle effect on appearance unless a non-smooth material is specified. The magnitude of the axis
attribute is irrelevant. Additional sphere attributes:
radius Radius of the sphere, default = 1
Note that the pos attribute for cylinder, arrow, cone, and pyramid corresponds to one end of the object, whereas for
a sphere it corresponds to the center of the object.
See description of Additional Attributes available for all 3D display objects.
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Working with objects

Color and Opacity

Color
In the RGB color system, you specify a color in terms of fractions of red, green, and blue, corresponding to how
strongly glowing are the tiny red, green, and blue dots of the computer screen. In the RGB scheme, white is the
color with a maximum of red, blue, and green (1, 1, 1). Black has minimum amounts (0, 0, 0). The brightest red is
represented by (1, 0, 0); that is, it has the full amount of red, no green, and no blue.
Here are some examples of RGB colors, with names you can use in Visual:

(1,0,0) color.red (1,1,0) color.yellow (0,0,0) color.black
(0,1,0) color.green (1,0.5,0) color.orange (1,1,1) color.white
(0,0,1) color.blue (0,1,1) color.cyan

(1,0,1) color.magenta

You can also create your own colors, such as these:
(0.5, 0.5, 0.5) a rather dark grey; or you can say color=color.gray(0.5) to mean (0.5,0.5,0.5)
(1,0.7,0.2) a coppery color
Colors may appear differently on different computers, and under different 3D lighting conditions. The named colors
above are most likely to display appropriately, because RGB values of 0 or 1 are unaffected by differing color
corrections ("gamma" corrections).
The VPython demo program colorsliders.py lets you adjust RGB sliders to visualize colors and print color triples
that you copy into your program. It also provides HSV sliders to adjust hue, saturation (how much white is added to
dilute the hue), and value (brightness), which is an alternative way to describe colors.
Visual only accepts RGB color descriptions, but there are functions for converting color triples between RGB and HSV:

c = (1,1,0)
c2 = color.rgb_to_hsv(c) # convert RGB to HSV
print hsv # (0.16667, 1, 1)
c3 = color.hsv_to_rgb(c2) # convert back to RGB
print c3 # (1, 1, 0)

Another example: sphere(radius=2, color=hsv_to_rgb( (0.5,1,0.8) )
Opacity
You can make most objects be transparent by specifying a value from 0-1 inclusive for the attribute "opacity". For
example, box(color=color.red, opacity=0.8) is slightly transparent. An opacity value of 0 means totally transparent,
and 1 means totally opaque. Currently curve, convex, faces, points, and helix objects do not allow transparency.
You may see incorrect rendering any time there is a translucent object (opacity < 1.0) which is not convex (e.g. ring), or
two translucent objects which overlap on the screen and also in their depth extents (distances from the camera to the
nearest and farthest planes perpendicular to scene.forward which intersect the object). The objects need not actually
overlap in 3D space to have problems. The incorrect rendering will usually have the effect of making the more distant
object disappear (fail to show through the nearer object). Accurate rendering of ad hoc scenes with translucency is
difficult and expensive, and we did not want to wait for a perfect solution before introducing this useful enhancement.

Lighting

Controlling One or More Visual Display Windows
Initially, there is one Visual display window named scene. Display objects do not create windows on the screen unless
they are used, so if you immediately create your own display object early in your program you will not need to worry
about scene. If you simply begin creating objects such as sphere they will go into scene.
display() Creates a display with the specified attributes, makes it the selected display, and returns it. For example,
the following creates another Visual display window 600 by 200, with its upper left corner at the upper left corner of
the screen (y is measured down from the top of the screen), with 'Examples of Tetrahedrons' in the title bar, centered
on location (5,0,0), and with a background color of cyan filling the window.

http://www.developpez.com
http://guigui.developpez.com/cours/python/vpython/en/


The Visual Module of VPython - Reference Manual par

- 23 -
http://guigui.developpez.com/cours/python/vpython/en/

scene2 = display(title='Examples of Tetrahedrons',
     x=0, y=0, width=600, height=200,
     center=(5,0,0), background=(0,1,1))

General-purpose options
select() Makes the specified display the "selected display", so that objects will be drawn into this display by default;
e.g. scene.select()
Executing myscene = display.get_selected() returns a reference to the display in which objects are currently being
created.
foreground Set color to be used by default in creating new objects such as sphere; default is white. Example:
scene.foreground = (1,0,0)
background Set color to be used to fill the display window; default is black.
ambient Color of nondirectional ("ambient") lighting. Default is color.gray(0.2); for compatibility with earlier versions
of Visual, this can be expressed as scene.ambient=0.2. Also see the following lights attribute.
lights List of light objects created for this display. By default, a display has two distant lights:
distant_light(direction=(0.22, 0.44, 0.88), color=color.gray(0.8)) and distant_light(direction=(-0.88, -0.22, -0.44),
color=color.gray(0.3)).
These are equivalent to the default lights in Visual prior to version 5. You can get rid of these default lights with
scene.lights = []. The color of light objects and the amount of scene.ambient must be specified with some care,
because if the total lighting intensity exceeds 1 anywhere in the scene the results are unpredictable. scene.lights
is a list of any lights you have created.
You can create lights that are local, near other objects. The following statement creates a yellow light positioned
at (x,y,z), and if you continually update lamp.pos, the light will move. You may wish to place a sphere or box with
material=materials.emissive at the same location so that the lamp looks like a glowing lamp.

lamp = local_light(pos=(x,y,z), color=color.yellow)

A distant red light located in the direction (x,y,z) is created like this:

distant_light(direction=(x,y,z), color=color.red)

Previous to Visual version 5, you set up a light by specifying a vector in the direction to the light from the origin, and
the magnitude of the vector was the intensity. For example, scene.lights = [vector(1,0,0)] with scene.ambient = 0
will light the scene with full intensity from the right side, with no ambient lighting on the left. In Visual version 5 and
later, this scheme for specifying lights still works, but it is preferable to create light objects.
To obtain camera position, see Mouse Interactions.
objects A list of all the visible objects in the display; invisible objects and lights are not listed (scene.lights is a list of
existing lights). For example, the following makes all visible boxes in the scene red:

for obj in scene2.objects: 
    if obj.__class__ == box # can say either box or 'box'
        obj.color = color.red

show_rendertime If you set scene.show_rendertime = 1, in the lower left corner of the display you will see
something like "cycle: 27 render: 5", meaning 27 milliseconds between renderings of the scene, taking 5 milliseconds
to render, in which case 22 out of 27 milliseconds were devoted to executing your Python statements.
stereo Stereoscopic option; scene.stereo = 'redcyan' will generate a scene for the left eye and a scene for the right
eye, to be viewed with red-cyan glasses, with the red lens over the left eye. (There are also 'redblue' and 'yellowblue'
options; note that objects that were not originally white may be somewhat dim.)
Setting scene.stereo = 'crosseyed' produces side-by-side images which if small enough can be seen in 3D by
crossing your eyes but focusing on the screen (this takes some practice). Setting scene.stereo = 'passive' produces
side-by-side images which if small enough can be seen in 3D by looking "wall-eyed", looking into the far distance but
focusing on the screen (this too takes some practice).
scene.stereo = 'active' will render alternating left eye/right eye images for viewing through shutter glasses if the
graphics system supports quad buffered stereo. If stereo equipment is not available, setting the option has no effect,
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and scene.stereo will have the value 'nostereo'. You can also use scene.stereo = 'passive' with quad buffered
stereo for display using two polarized projectors (for stereo viewing using simple passive polarized glasses). (Quad
buffered 'active' stereo is only available on specialised graphics systems that have the necessary hardware and
shutter glass connector, such as PCs with CRT displays and nVidia Quadro graphics cards. It generates the illusion
of depth by rendering each frame twice from slightly different viewpoints corresponding to the left and right eyes.
Special shutter glasses are synchronised with the alternating images so that each eye sees only the matching frame,
and your brain does the rest. It's called 'quad buffered' because there is an OpenGL buffer per eye, both double-
buffered for smooth updating. 'Passive' stereo requires a video card that can drive two monitors, or two projectors.)
cursor.visible By setting scene.cursor.visible = 0, the mouse cursor becomes invisible. This is often appropriate
while dragging an object using the mouse. Restore the cursor with scene.cursor.visible = 1. NOT YET
IMPLEMENTED IN VISUAL 5.
Controlling the window
The window attributes x, y, width, height, title, and fullscreen cannot be changed while a window is active; they
are used to create a window, not to change one. If you want to modify any of these window attributes, first make the
window invisible, make the changes, and then make the window visible again. This creates a new window with the
new attributes; all existing objects are still part of the new window.
x, y Position of the window on the screen (pixels from upper left)
width, height Width and height of the display area in pixels: scene.height = 200 (includes title bar).
title Text in the window's title bar: scene.title = 'Planetary Orbit'
fullscreen Full screen option; scene2.fullscreen = 1 makes the display named scene2 take up the entire screen.
In this case there is no close box visible; press Escape to exit.
(There is currently a bug in the fullscreen option for Linux; the Escape key has no effect. If you use the fullscreen
option on Linux, be sure to program a mouse or keyboard input for quitting the program.)
visible Make sure the display is visible; scene2.visible = 1 makes the display named scene2 visible. This is
automatically called when new primitives are added to the display, or the mouse is referenced. Setting visible to 0
hides the display.
exit If sceneb.exit = 0, the program does not quit when the close box of the sceneb display is clicked. The default
is sceneb.exit = 1, in which case clicking the close box does make the program quit.
Controlling the view
center Location at which the camera continually looks, even as the user rotates the position of the camera. If you
change center, the camera moves to continue to look in the same "compass" direction toward the new center, unless
you also change forward (see next attribute). Default (0,0,0).
autocenter scene.center is continuously updated to be the center of the smallest axis-aligned box containing the
scene. This means that if your program moves the entire scene, the center of that scene will continue to be centered
in the window.
forward Vector pointing in the same direction as the camera looks (that is, from the current camera location, given
by scene.mouse.camera, toward scene.center). The user rotation controls, when active, will change this vector
continuously. When forward is changed, the camera position changes to continue looking at center. Default (0,0,-1).
fov Field of view of the camera in radians. This is defined as the maximum of the horizontal and vertical fields of
view. You can think of it as the angular size of an object of size range, or as the angular size of the longer axis of the
window as seen by the user. Default pi/3.0 radians (60 degrees).
range The extent of the region of interest away from center along each axis. This is the inverse of scale, so use
either range or scale depending on which makes the most sense in your program. Setting range to 10 is the same
as setting it to (10,10,10). Setting range to (10,0,0) means that scene.center+scene.range will be at the right edge
of a square window. A sphere of radius 10 will fill the window. A cubical box whose half-width is 10 will overfill the
window, because the front of the box in 3D appears larger than the xy plane passing through scene.center, unless
the field of view is very small.
scale A scaling factor which scales the region of interest into the sphere with unit radius. This is the inverse of range,
so use either range or scale depending on which makes the most sense in your program. Setting scale to 0.1 is the
same as setting it to (0.1,0.1,0.1) or setting range to (10,10,10).
up A vector representing world-space up. This vector will always project to a vertical line on the screen (think of the
camera as having a "plumb bob" that keeps the top of the screen oriented toward up). The camera also rotates around
this axis when the user rotates "horizontally". By default the y axis is the up vector.
There is an interaction between up and forward, the direction that the camera is pointing. By default, the camera
points in the -z direction (0,0,-1). In this case, you can make the x or y axes (or anything between) be the up vector, but
you cannot make the z axis be the up vector, because this is the axis about which the camera rotates when you set the
up attribute. If you want the z axis to point up, first set forward to something other than the -z axis, for example (1,0,0).
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autoscale = 0 no automatic scaling (set range or scale explicitly); autoscale = 1 automatic scaling (default). It is often
useful to let Visual make an initial display with autoscaling, then turn autoscaling off to prevent further automated
changes.
userzoom = 0 user cannot zoom in and out of the scene
userzoom = 1 user can zoom (default)
userspin = 0 user cannot rotate the scene
userspin = 1 user can rotate (default)

Materials and Textures

You can specify a material such as wood for any object other than a points object:

sphere(color=color.orange, material=materials.wood)

The materials that are currently available include these:

• materials.wood
• materials.rough
• materials.marble
• materials.plastic
• materials.earth
• materials.diffuse
• materials.emissive (looks like it glows)
• materials.unshaded (unaffected by lighting)

The example program material_test.py displays all of these materials. The emissive material is particularly
appropriate for simulating the appearance of a light glowing with the specified color. This apparent light has no lighting
effect on other objects, but you may wish to place a local_light at the same location, as is done with the swinging
light in the example program texture_and_lighting.py. The appearance of the unshaded material is unaffected by
lighting and is useful when you want to display an object whose appearance is determined solely by its own attributes.

Materials will work with graphics cards that support Pixel Shader 3.0 ("PS 3.0"). For details, see http://
en.wikipedia.org/wiki/Pixel_shader#Hardware. Some materials may work with graphics cards that support PS 2.0,
but other materials may need to be manually disabled; see instructions in the site-settings.py module in the Visual
package in your site-packages folder. If the graphics hardware does not support pixel shaders, the material property
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is ignored. If you think you should be able to use materials but have trouble with their display or performance, we
highly recommend upgrading your video card drivers to the latest version.
Some materials such as wood are oriented to the specified axis. For example, a wood box with default axis = (1,0,0)
shows tree rings on its yz surfaces and stripes on the other faces. Changing the axis changes which face you see
the tree rings on.
Creating your own texture
You can create a texture object and then apply it to the surface of an object. A surface texture is an M by N array of
slots containing 1, 2, 3, or 4 numerical values. M and N must be powers of 2 (1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
etc.). The numerical values can represent color, luminance (brightness or shades of gray), or opacity.
Here are the possibilities for each slot in the array:

• 1 value: luminance by default, or specify channels=["opacity"] to represent opacity
• 2 values: luminance and opacity
• 3 values: red,green,blue
• 4 values: red,green,blue,opacity

Here is an example program in which a 4 by 4 by 1 checkerboard texture is created and applied to a box:

from visual import *
checkerboard = ( (0,1,0,1), 
                 (1,0,1,0),
                 (0,1,0,1),
                 (1,0,1,0) )
tex = materials.texture(data=checkerboard,
                     mapping="rectangular",
                     interpolate=False)
box(axis=(0,0,1), color=color.cyan, material=tex)

The example above uses a rectangular mapping, which places the texture on two opposing faces of a box, with
stripes along the sides. By default, one of the faces is in the (1,0,0) direction, but this can be changed by specifying a
different axis for the box, as was done in the example above. A sign mapping is similar to rectangular but is unaffected
by the color of the object and appears on only one face of a box (determined by the axis of the box). A spherical
mapping wraps around the entire object. In the example program texture_and_lighting.py you can find a creation
of a beach ball using spherical mapping.
By default interpolate is True, but to get a sharply defined checkerboard in the example above, it was set to False.
You can save the texture data in a file for later use:

materials.saveTGA("checks", checkerboard)

This saves the checkboard pattern in a file "checks.tga", a targa file which many graphics applications can display.
In later programs you can use this data without recreating it:

data = materials.loadTGA("checks")

More generally, any targa file whose width and height are both powers of 2 can be read as data using
materials.loadTGA(filename). If the actual file name is "checks.tga" you can give the full file name or just "checks".
One way to create a pattern is to start by creating a numpy array of zeros, then assign values to individual slots:

pattern = zeros((4,8,3)) # 4 by 8 by 3 numpy array of 0's
pattern[0][0] = (1,.5,.7) # assign first rgb triple

Another example
Here is an example of placing a "sign" on one face of a box, consisting of a 2 by 2 by 3 grid of color components:
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from visual import *
grid = ( (color.red, (1, 0.7 ,0)),
         ((0, 1, 0.3), color.magenta) )
tgrid = materials.texture(data=grid,
                          mapping="sign",
                          interpolate=False)
box(axis=(0,0,1), material=tgrid)

Making a texture from a photo
A texture can be created from a targa file, and various graphics applications can convert photos in jpeg or other
formats to targa files. One tool for doing this is PIL, the Python Imaging Library, which can be downloaded and installed
(you can find it with a web search). Here is an example of PIL code which converts a jpeg photo into a targa file which
can be used to create a texture for displaying the image, as in the example program stonehenge.py.

from visual import *
import Image # Must install PIL
name = "flower"
width = 128 # must be power of 2
height = 128 # must be power of 2
im = Image.open(name+".jpg")
#print im.size # optionally, see size of image
# Optional cropping:
#im = im.crop((x1,y1,x2,y2)) # (0,0) is upper left
im = im.resize((width,height), Image.ANTIALIAS)
materials.saveTGA(name,im)

At a later time you can say data = materials.loadTGA(name) to retrieve the image data from the targa file.
As a convenience, a texture can also be created directly from the PIL image data, like this:

tex = materials.texture(data=im, mapping="sign")

Efficiency issues
Normally you create a data pattern containing values in the range from 0.0 to 1.0, the standard range of color
components and opacity in Visual. However, the underlying graphics machinery works with values in the range of 0
to 255, which can be expressed in one 8-bit byte of computer memory. If you are dealing with large textures and time
is critical, you should avoid conversions from the range 0-1 to the range 0-255 by constructing the texture data from
a numpy array of unsigned 8-bit bytes. An unsigned byte is referred to as ubyte. Here is a simple example:

checkers = array( ( (0,255,0,255), 
                    (255,0,255,0),
                    (0,255,0,255),
                    (255,0,255,0) ), ubyte)

The array function converts a sequence of values into a numpy array. In this case the values are 8-bit bytes.
Channels
Data "channels" are a part of the definition of a texture. For the most part, these channels are assigned automatically
for you, like this:

• 1 value: channels=["luminance"] by default, channels=["opacity"] to represent opacity
• 2 values: channels=["luminance","opacity"]
• 3 values: channels=["red","green","blue"]
• 4 values: channels=["red","green","blue","opacity"]

Except for specifying that a pattern represents opacity rather than luminance (brightness, or shade of gray), it isn't
necessary to specify channels when constructing a texture because the channel options shown above are currently
the only valid sets of channels. However, it is expected that in the future there may be additional channels available,
such as glossiness.
mipmap
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When an object in the scene is small and far away, there is no need to display its texture in full detail. With the default
mipmap=True, Visual prepares a set of smaller textures to use when appropriate. These additional textures take
some time to prepare for later use, and required storage space is one-third larger, but they can speed up the rendering
of a scene. It should rarely be the case that you would need to set mipmap=False.
Creating your own materials
Creating your own materials (in contrast to creating textures) is technically somewhat challenging. The program
materials.py, a component of the Visual module, contains the shader models for wood and other materials, and it
also contains instructions on how to build your own materials. Shader models are written in a C-like language, GLSL
(OpenGL Shader Language).

Defaults

Convenient Defaults
Objects can be specified with convenient defaults:
arrow() is equivalent to arrow(pos=(0,0,0), axis=(1,0,0), radius=1)
box() is equivalent to box(pos=(0,0,0), size=(1,1,1))
cone() is equivalent to cone(pos=(0,0,0), axis=(1,0,0), radius=1)
convex() establishes an "empty" object to which points can be appended
curve() establishes an "empty" curve to which points can be appended
cylinder() is equivalent to cylinder(pos=(0,0,0), axis=(1,0,0), radius=1)
ellipsoid() is equivalent to ellipsoid(pos=(0,0,0), size=(1,1,1))
frame() establishes a frame with pos=(0,0,0) and axis=(1,0,0)
helix() is equivalent to helix(pos=(0,0,0), axis=(1,0,0), radius=1, thickness=0.05, coils=5)
points() establishes an "empty" set of points to which points can be appended
pyramid() is equivalent to pyramid(pos=(0,0,0), size=(1,1,1), axis=(1,0,0))
ring() is equivalent to ring(pos=(0,0,0), axis=(1,0,0), radius=1)
sphere() is equivalent to sphere(pos=(0,0,0), radius=1 )

Animation Speed

Limiting the Animation Rate
rate( frequency )
Halts computations until 1.0/frequency seconds after the previous call to rate().
For example, rate(50) will halt computations long enough to make sure that at least 1.0/50.0 second has elapsed.
If this much time has already elapsed, no halt is performed. If you place rate(50) inside a computational loop, the
loop will execute at a maximum of 50 times per second, even if the computer can run faster than this. This makes
animations look about the same on computers of different speeds, as long as the computers are capable of carrying
out 50 computations per second.

Rotations

Rotating an Object
Objects other than curve, convex, faces, and points can be rotated about a specified origin (to rotate these other
objects, put them in a frame and rotate the frame).

obj.rotate(angle=pi/4., axis=axis, origin=pos)

The rotate function applies a transformation to the specified object (sphere, box, etc.). The transformation is a rotation
of angle radians, counterclockwise around the line defined by origin and origin+axis. By default, rotations are around
the object's own pos and axis.
Also see the rotation function available for vectors.
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Additional Options

Additional Attributes
The following attributes apply to all VPython objects:
visible If false (0), object is not displayed; e.g. ball.visible = 0
Use ball.visible = 1 to make the ball visible again.
frame Place this object into a specified frame, as in ball = sphere(frame = f1)
display When you start a VPython program, for convenience Visual creates a display window and names it scene. By
default, objects you create go into that display window. You can choose to put an object in a different display like this:

scene2 = display( title = "Act IV, Scene 2" ) 
rod = cylinder( display = scene2 )

Executing myscene = display.get_selected() returns a reference to the display in which objects are currently being
created. Given a specific display named scene2, scene2.select() makes scene2 be the "selected display", so that
objects will be drawn into scene2 by default.
There is a rotate function for all objects other than curve, convex, faces, and points (which can be put into a frame
and the frame rotated).
__class__ Name of the class of object. For example, ball.__class__ is sphere is true if ball is a sphere object. There
are two underscores before and after the word class. In a list of visible objects provided by scene.objects, if obj is
in this list you can determine the class of the object with obj.__class__.
__copy__() Makes a copy of an object. There are two underscores before and after copy. Without any arguments,
this results in creating a second object in the exact same position as the first, which is probably not what you want.
The __copy__() function takes a list of keyword=value argument pairs which are applied to the new object before
making it visible. For example, to clone an object from one display to another, you would execute: new_object =
old_object.__copy__( display=new_display). Restriction: If the original object is within a frame, and the new object
is on a different display, you must supply both a new display and a new frame for the new object (the new frame may
be None). This is due to the restriction that an object may not be located within a frame that is in a separate display.
Here is an example that uses the __copy__() function. The following routine copies all of the Visual objects currently
existing in one display into a previously defined second display, as long as there are no nested frames (frames within
frames):

def clone_universe( new_display, old_display):
    # Create a dictionary of frames in old display to 
    # the corresponding frames in the new display.
    frames = {} # create empty dictionary 
    for obj in old_display.objects:
        if obj.__class__ == frame:
            frames[obj] = obj.__copy__( frame=None, 
                display=new_display)
    # For each old frame within another reference frame,
    # place the new frame in appropriate frame in new
    # display. Here old is an object and new is its
    # frame in the new display.
    for old, new in frames.iteritems():
        if old.frame:
            new.frame = frames[old.frame]
    # Copy over the universe.
    for obj in old_display.objects:
        if obj.__class__ == frame:
            # Already taken care of above.
            pass
        elif obj.frame:
            # Initialize with the corresponding frame
            # in the new display:
            obj.__copy__( display=new_display, 
                   frame=frames[obj.frame])
        else:
            # No frame issue;
            obj.__copy__( display=new_display)
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See Controlling One or More Visual Display Windows for more information on creating and manipulating display
objects.

Delete an Object

Deleting an Object
To delete a Visual object just make it invisible: ball.visible = 0
Technical detail: If you later re-use the name ball, for example by creating a new object and naming it ball, Python
will be free to release the memory used by the object formerly named ball (assuming no other names currently refer
to that object).

3/4 = 0 ?

Floating Division
By default, Python performs integer division with truncation, so that 3/4 is 0, not 0.75. This is inconvenient when doing
scientific computations, and can lead to hard-to-find bugs in programs. You can write 3./4., which is 0.75 by the rules
of "floating-point" division.
You can change the default so that 3/4 is treated as 0.75. Place this at the start of your program:

from __future__ import division

There are two underscores ("_" and "_") before "future" and two after.
The Visual module converts integers to floating-point numbers for you when specifying attributes of objects:
object.pos = (1,2,3) is equivalent to object.pos = (1.,2.,3.)

Windows/Events/Files

Windows

Controlling One or More Visual Display Windows
Initially, there is one Visual display window named scene. Display objects do not create windows on the screen unless
they are used, so if you immediately create your own display object early in your program you will not need to worry
about scene. If you simply begin creating objects such as sphere they will go into scene.
display() Creates a display with the specified attributes, makes it the selected display, and returns it. For example,
the following creates another Visual display window 600 by 200, with its upper left corner at the upper left corner of
the screen (y is measured down from the top of the screen), with 'Examples of Tetrahedrons' in the title bar, centered
on location (5,0,0), and with a background color of cyan filling the window.

scene2 = display(title='Examples of Tetrahedrons',
     x=0, y=0, width=600, height=200,
     center=(5,0,0), background=(0,1,1))

General-purpose options
select() Makes the specified display the "selected display", so that objects will be drawn into this display by default;
e.g. scene.select()
Executing myscene = display.get_selected() returns a reference to the display in which objects are currently being
created.
foreground Set color to be used by default in creating new objects such as sphere; default is white. Example:
scene.foreground = (1,0,0)
background Set color to be used to fill the display window; default is black.
ambient Color of nondirectional ("ambient") lighting. Default is color.gray(0.2); for compatibility with earlier versions
of Visual, this can be expressed as scene.ambient=0.2. Also see the following lights attribute.
lights List of light objects created for this display. By default, a display has two distant lights:
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distant_light(direction=(0.22, 0.44, 0.88), color=color.gray(0.8)) and distant_light(direction=(-0.88, -0.22, -0.44),
color=color.gray(0.3)).
These are equivalent to the default lights in Visual prior to version 5. You can get rid of these default lights with
scene.lights = []. The color of light objects and the amount of scene.ambient must be specified with some care,
because if the total lighting intensity exceeds 1 anywhere in the scene the results are unpredictable. scene.lights
is a list of any lights you have created.
You can create lights that are local, near other objects. The following statement creates a yellow light positioned
at (x,y,z), and if you continually update lamp.pos, the light will move. You may wish to place a sphere or box with
material=materials.emissive at the same location so that the lamp looks like a glowing lamp.

lamp = local_light(pos=(x,y,z), color=color.yellow)

A distant red light located in the direction (x,y,z) is created like this:

distant_light(direction=(x,y,z), color=color.red)

Previous to Visual version 5, you set up a light by specifying a vector in the direction to the light from the origin, and
the magnitude of the vector was the intensity. For example, scene.lights = [vector(1,0,0)] with scene.ambient = 0
will light the scene with full intensity from the right side, with no ambient lighting on the left. In Visual version 5 and
later, this scheme for specifying lights still works, but it is preferable to create light objects.
To obtain camera position, see Mouse Interactions.
objects A list of all the visible objects in the display; invisible objects and lights are not listed (scene.lights is a list of
existing lights). For example, the following makes all visible boxes in the scene red:

for obj in scene2.objects: 
    if obj.__class__ == box # can say either box or 'box'
        obj.color = color.red

show_rendertime If you set scene.show_rendertime = 1, in the lower left corner of the display you will see
something like "cycle: 27 render: 5", meaning 27 milliseconds between renderings of the scene, taking 5 milliseconds
to render, in which case 22 out of 27 milliseconds were devoted to executing your Python statements.
stereo Stereoscopic option; scene.stereo = 'redcyan' will generate a scene for the left eye and a scene for the right
eye, to be viewed with red-cyan glasses, with the red lens over the left eye. (There are also 'redblue' and 'yellowblue'
options; note that objects that were not originally white may be somewhat dim.)
Setting scene.stereo = 'crosseyed' produces side-by-side images which if small enough can be seen in 3D by
crossing your eyes but focusing on the screen (this takes some practice). Setting scene.stereo = 'passive' produces
side-by-side images which if small enough can be seen in 3D by looking "wall-eyed", looking into the far distance but
focusing on the screen (this too takes some practice).
scene.stereo = 'active' will render alternating left eye/right eye images for viewing through shutter glasses if the
graphics system supports quad buffered stereo. If stereo equipment is not available, setting the option has no effect,
and scene.stereo will have the value 'nostereo'. You can also use scene.stereo = 'passive' with quad buffered
stereo for display using two polarized projectors (for stereo viewing using simple passive polarized glasses). (Quad
buffered 'active' stereo is only available on specialised graphics systems that have the necessary hardware and
shutter glass connector, such as PCs with CRT displays and nVidia Quadro graphics cards. It generates the illusion
of depth by rendering each frame twice from slightly different viewpoints corresponding to the left and right eyes.
Special shutter glasses are synchronised with the alternating images so that each eye sees only the matching frame,
and your brain does the rest. It's called 'quad buffered' because there is an OpenGL buffer per eye, both double-
buffered for smooth updating. 'Passive' stereo requires a video card that can drive two monitors, or two projectors.)
cursor.visible By setting scene.cursor.visible = 0, the mouse cursor becomes invisible. This is often appropriate
while dragging an object using the mouse. Restore the cursor with scene.cursor.visible = 1. NOT YET
IMPLEMENTED IN VISUAL 5.
Controlling the window
The window attributes x, y, width, height, title, and fullscreen cannot be changed while a window is active; they
are used to create a window, not to change one. If you want to modify any of these window attributes, first make the
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window invisible, make the changes, and then make the window visible again. This creates a new window with the
new attributes; all existing objects are still part of the new window.
x, y Position of the window on the screen (pixels from upper left)
width, height Width and height of the display area in pixels: scene.height = 200 (includes title bar).
title Text in the window's title bar: scene.title = 'Planetary Orbit'
fullscreen Full screen option; scene2.fullscreen = 1 makes the display named scene2 take up the entire screen.
In this case there is no close box visible; press Escape to exit.
(There is currently a bug in the fullscreen option for Linux; the Escape key has no effect. If you use the fullscreen
option on Linux, be sure to program a mouse or keyboard input for quitting the program.)
visible Make sure the display is visible; scene2.visible = 1 makes the display named scene2 visible. This is
automatically called when new primitives are added to the display, or the mouse is referenced. Setting visible to 0
hides the display.
exit If sceneb.exit = 0, the program does not quit when the close box of the sceneb display is clicked. The default
is sceneb.exit = 1, in which case clicking the close box does make the program quit.
Controlling the view
center Location at which the camera continually looks, even as the user rotates the position of the camera. If you
change center, the camera moves to continue to look in the same "compass" direction toward the new center, unless
you also change forward (see next attribute). Default (0,0,0).
autocenter scene.center is continuously updated to be the center of the smallest axis-aligned box containing the
scene. This means that if your program moves the entire scene, the center of that scene will continue to be centered
in the window.
forward Vector pointing in the same direction as the camera looks (that is, from the current camera location, given
by scene.mouse.camera, toward scene.center). The user rotation controls, when active, will change this vector
continuously. When forward is changed, the camera position changes to continue looking at center. Default (0,0,-1).
fov Field of view of the camera in radians. This is defined as the maximum of the horizontal and vertical fields of
view. You can think of it as the angular size of an object of size range, or as the angular size of the longer axis of the
window as seen by the user. Default pi/3.0 radians (60 degrees).
range The extent of the region of interest away from center along each axis. This is the inverse of scale, so use
either range or scale depending on which makes the most sense in your program. Setting range to 10 is the same
as setting it to (10,10,10). Setting range to (10,0,0) means that scene.center+scene.range will be at the right edge
of a square window. A sphere of radius 10 will fill the window. A cubical box whose half-width is 10 will overfill the
window, because the front of the box in 3D appears larger than the xy plane passing through scene.center, unless
the field of view is very small.
scale A scaling factor which scales the region of interest into the sphere with unit radius. This is the inverse of range,
so use either range or scale depending on which makes the most sense in your program. Setting scale to 0.1 is the
same as setting it to (0.1,0.1,0.1) or setting range to (10,10,10).
up A vector representing world-space up. This vector will always project to a vertical line on the screen (think of the
camera as having a "plumb bob" that keeps the top of the screen oriented toward up). The camera also rotates around
this axis when the user rotates "horizontally". By default the y axis is the up vector.
There is an interaction between up and forward, the direction that the camera is pointing. By default, the camera
points in the -z direction (0,0,-1). In this case, you can make the x or y axes (or anything between) be the up vector, but
you cannot make the z axis be the up vector, because this is the axis about which the camera rotates when you set the
up attribute. If you want the z axis to point up, first set forward to something other than the -z axis, for example (1,0,0).
autoscale = 0 no automatic scaling (set range or scale explicitly); autoscale = 1 automatic scaling (default). It is often
useful to let Visual make an initial display with autoscaling, then turn autoscaling off to prevent further automated
changes.
userzoom = 0 user cannot zoom in and out of the scene
userzoom = 1 user can zoom (default)
userspin = 0 user cannot rotate the scene
userspin = 1 user can rotate (default)

Mouse Events

Mouse Interactions
Introduction
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Mouse objects are obtained from the mouse attribute of a display object such as scene. For example, to obtain mouse
input from the default window created by Visual, refer to scene.mouse. For basic examples of mouse handling, see
Click example and Drag example.
A mouse object has a group of attributes corresponding to the current state of the mouse. It also has functions
getevent() and getclick(), which return an object with similar attributes corresponding to the state of the mouse when
the user last did something with the mouse buttons. If the user has not already done something with the mouse
buttons, getevent() and getclick() will stop program execution until this happens.
Different kinds of mouse
The mouse routines can handle a three-button mouse, with "left", "right", and "middle" buttons. For systems with a
two-button mouse, the "middle" button consists of the left and right buttons pressed together. For systems with a one
button mouse, the right button is invoked by holding down the Command key, and the middle button is invoked by
holding down the Option key.
Current state of mouse
pos The current 3D position of the mouse cursor; scene.mouse.pos. Visual always chooses a point in the plane
parallel to the screen and passing through display.center. (See Projecting mouse information onto a given plane
for other options.)
button = None (no buttons pressed), 'left', 'right', 'middle', or 'wheel' (scroll wheel pressed on some Windows mouses).
Example: scene.mouse.button == 'left' is true if the left button is currently down.
pick The nearest object in the scene which falls under the cursor, or None. At present only spheres, boxes, cylinders,
and convex can be picked. The picked object is scene.mouse.pick.
pickpos The 3D point on the surface of the picked object which falls under the cursor, or None;
scene.mouse.pickpos.
camera The read-only current position of the camera as positioned by the user, scene.mouse.camera. For example,
mag(scene.mouse.camera-scene.center) is the distance from the center of the scene to the current position of the
camera. If you want to set the camera position and direction by program, use scene.forward and scene.center,
described in Controlling Windows.
ray A unit vector pointing from camera in the direction of the mouse cursor. The points under the mouse cursor are
exactly { camera + t*ray for t>0}.
    The camera and ray attributes together define all of the 3D points under the mouse cursor.
project() Projects position onto a plane. See Projecting mouse position onto a given plane.
alt = 1 if the ALT key is down, otherwise 0
ctrl = 1 if the CTRL key is down, otherwise 0 (for a one-button mouse, meaningful only if mouse buttons up)
shift = 1 if the SHIFT key is down, otherwise 0 (for a one-button mouse, meaningful only if mouse buttons up)
Getting events
There are five kinds of mouse events: press, click, drag, drop, and release:

• A press event occurs when a mouse button is depressed.
• A click event occurs when all mouse buttons are released with no or very slight movement of the mouse.

Note that a click event happens when the mouse button is released. See Click example.
• A drag event occurs when the mouse is moved slightly after a press event, with mouse buttons still down.

This can be used to signal the beginning of dragging an object. See Drag example.
• A drop event occurs when the mouse buttons are released after a drag event.
• A release event occurs when the mouse buttons are released after a click or drag event.

Between a drag event (start of dragging) and a drop event (end of dragging), there are no mouse events but you can
examine the continuously updated position of the mouse indicated by scene.mouse.pos. Here is how to tell that an
event has happened, and to get information about that event:
events The number of events (press, click, drag, or drop) which have been queued; e.g. scene.mouse.events.
scene.mouse.events = 0 may be used to discard all input. No value other than zero can be assigned.
getevent() Obtains the earliest mouse event and removes it from the input queue. If no events are waiting in the queue
(that is, if scene.mouse.events is zero), getevent() waits until the user enters a mouse event (press, click, drag, or
drop). getevent() returns an object with attributes similar to a mouse object: pos, button, pick, pickpos, camera,
ray, project(), alt, ctrl, and shift. These attributes correspond to the state of the mouse when the event took place.
For example, after executing mm = scene.mouse.getevent() you can look at the various properties of this event,
such as mm.pos, mm.pick, mm.drag (see below), etc.
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If you are interested in every type of event (press, click, drag, and drop), you must use events and getevent(). If
you are only interested in left click events (left button down and up without significant mouse movement), you can
use clicked and getclick():
clicked The number of left clicks which have been queued; e.g. scene.mouse.clicked.
This does not include a count of nonclick events (press, drag, or drop).
getclick() Obtains the earliest mouse left click event (pressing the left button and releasing it in nearly the same
position) and removes it from the input queue, discarding any earlier press, drag, or drop events. If no clicks are waiting
in the queue (that is, if scene.mouse.clicked is zero), getclick() waits until the user clicks. Otherwise getclick() is
just like getevent().
It is a useful debugging technique to insert scene.mouse.getclick() into your program at a point where you would
like to stop temporarily to examine the scene. Then just click to proceed.
Additional information obtained with getevent() or getclick()
In addition to the information available with scene.mouse, getevent() and getclick() furnish this additional
information:
press = 'left' for a press event, or None ('right' or 'middle' not currently implemented)
click = 'left' for a click event, or None ('right' or 'middle' not currently implemented); in this case pos and other attributes
correspond to the state of the mouse at the time of the original press event, so as not to lose initial position information.
See Click example.
drag = 'left' for a drag event, or None ('right' or 'middle' not currently implemented); in this case pos and other attributes
correspond to the state of the mouse at the time of the original press event, so as not to lose initial position information.
See Drag example.
drop = 'left' for a drop event, or None ('right' or 'middle' not currently implemented)
release = 'left' following click and drop events, indicating which button was released, or None ('right' or 'middle' not
currently implemented)
Projecting mouse position onto a given plane
Here is a way to get the mouse position relative to a particular plane in space:

temp = scene.mouse.project(normal=(0,1,0), point=(0,3,0))
if temp: # temp is None if no intersection with plane
    ball.pos = temp

This projects the mouse cursor onto a plane that is perpendicular to the specified normal. If point is not specified, the
plane passes through the origin. It returns a 3D position, or None if the projection of the mouse misses the plane.
In the example shown above, the user of your program will be able to use the mouse to place balls in a plane parallel
to the xy plane, a height of 3 above the xy plane, no matter how the user has rotated the point of view.
You can instead specify a perpendicular distance d from the origin to the plane that is perpendicular to the specified
normal. The example above is equivalent to

temp = scene.mouse.project(normal=(0,1,0), d=3)

Mouse Click

Click Example
This program displays a box (which automatically creates a window referred to as scene), then repeatedly waits for a
mouse left click, prints the mouse position in the Python shell window,, and displays a cyan sphere. A mouse click is
defined as pressing and releasing the left mouse button with almost no motion of the mouse, so the sphere appears
when you release the mouse button.

from visual import *
scene.range = 4
box() # display a box for context
while 1:
    if scene.mouse.clicked:
        m = scene.mouse.getclick()
        loc = m.pos
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        print loc
        sphere(pos=loc, radius=0.2, color=color.cyan)

Copy this program into an IDLE window and run the program. Click outside the box and a cyan sphere appears where
you click. If you click inside the box, nothing seems to happen. This is because the mouse click is in the xy plane,
and the sphere is buried inside the box. If you rotate the scene and then click, you'll see that the spheres go into the
new plane parallel to the screen and passing through scene.center. If you want all of the spheres to go into the xy
plane, perpendicular to the z axis, change the latter part of the program like this:

        loc = m.project(normal=(0,0,1))
        # loc is None if no intersection with plane
        if loc:
            print loc
            sphere(pos=loc, radius=0.2, color=color.cyan)

Here is general mouse documentation.

Mouse Drag

Drag example
Here is the sequence of mouse events involved in dragging something:
1) m1.press is true when you depress the mouse button (it is 'left' if left button; any quantity that is nonzero is
considered true in Python).
2) m1.drag is true when the mouse coordinates change from what they were at the time of m1.press.
At the time of the drag event, the mouse position is reported to be what it was at the time of the press event, so that
the dragging can start at the place where the user first clicked. If the mouse is in motion at the time of the press event,
it is quite possible that the next position seen by the computer, at the time of the drag event, could be quite far from
the click position. This is why the position of the drag event is reported as though it occurred at the press location.
3) No events occur while dragging; you continually use scene.mouse.pos to update what you're dragging.
4) m1.drop is true when you release the mouse button.
You can program dragging with the mouse simply by continually reading the current value of scene.mouse.pos. Here
is a complete routine for dragging a sphere with the left button down. Copy this into an edit window and try it!

from visual import *
scene.range = 5 # fixed size, no autoscaling
ball = sphere(pos=(-3,0,0), color=color.cyan)
cube = box(pos=(+3,0,0), size=(2,2,2), color=color.red)
pick = None # no object picked out of the scene yet
while 1: 
    if scene.mouse.events: 
        m1 = scene.mouse.getevent() # get event
        if m1.drag and m1.pick == ball: # if touched ball
            drag_pos = m1.pickpos # where on the ball
            pick = m1.pick # pick now true (not None) 
        elif m1.drop: # released at end of drag
            pick = None # end dragging (None is false)
    if pick:
        # project onto xy plane, even if scene rotated:
        new_pos = scene.mouse.project(normal=(0,0,1)) 
        if new_pos != drag_pos: # if mouse has moved
            # offset for where the ball was clicked:
            pick.pos += new_pos - drag_pos 
            drag_pos = new_pos # update drag position

If you do a lot of processing of each mouse movement, or you are leaving a trail behind the moving object, you may
need to check whether the "new" mouse position is in fact different from the previous position before processing the
"move", as is done in the example above. For example, a trail drawn with a curve object that contains a huge number
of points all at the same location may not display properly.
Most VPython objects can be "picked" by clicking them. Here is a more general routine which lets you drag either the
tail or the tip of an arrow. Copy this into an edit window and try it!
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from visual import *
scene.range = 8 # fixed size, no autoscaling
arr = arrow(pos=(2,0,0),axis=(0,5,0))
by = 0.3 # click this close to tail or tip
drag = None # have not selected tail or tip of arrow
while 1: 
    if scene.mouse.events: 
        m1 = scene.mouse.getevent() # obtain event
        if m1.press:
            if mag(arr.pos-m1.pos) <= by:
                drag = 'tail' # near tail of arrow
            elif mag((arr.pos+arr.axis)-m1.pos) <= by:
                drag = 'tip' # near tip of arrow
            drag_pos = m1.pos # save press location 
        elif m1.drop: # released at end of drag
            drag = None # end dragging (None is False) 
    if drag: 
        new_pos = scene.mouse.pos
        if new_pos != drag_pos: # if mouse has moved
            displace = new_pos - drag_pos # moved how far 
            drag_pos = new_pos # update drag position
            if drag == 'tail':
                arr.pos += displace # displace the tail
            else:
                arr.axis += displace # displace the tip

Here is general mouse documentation.

Keyboard Events

Keyboard Interactions
If scene.kb.keys is nonzero, one or more keyboard events have been stored, waiting to be processed.
Executing key = scene.kb.getkey() obtains a keyboard input and removes it from the input queue. If there are no
events waiting to be processed, getkey() waits until a key is pressed.
If len(key) == 1, the input is a single printable character such as 'b' or 'B' or new line ('\n') or tab ('\t'). Otherwise
key is a multicharacter string such as 'escape' or 'backspace' or 'f3'. For such inputs, the ctrl, alt, and shift keys are
prepended to the key name. For example, if you hold down the shift key and press F3, key will be the character
string 'shift+f3', which you can test for explicitly. If you hold down all three modifier keys, you get 'ctrl+alt+shift+f3';
the order is always ctrl, alt, shift.
Multicharacter names include delete, backspace, page up, page down, home, end, left, up, right, down, numlock,
scrlock, f1, f2, f3, f4, f5, f6, f7, f8. Windows and Linux also have f9, f11, f12, insert.
Here is a test routine that lets you type text into a label:

from visual import *
prose = label() # initially blank text
while 1: 
    if scene.kb.keys: # event waiting to be processed?
        s = scene.kb.getkey() # get keyboard info
        if len(s) == 1: 
            prose.text += s # append new character
        elif ((s == 'backspace' or s == 'delete') and
                len(prose.text)) > 0: 
            prose.text = prose.text[:-1] # erase letter
        elif s == 'shift+delete': 
            prose.text = '' # erase all text

Note that mouse events also provide information about the ctrl, alt, and shift keys, which may be used to modify
mouse actions.
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Button and Sliders

Controls: buttons, sliders, toggles, and menus
You can create buttons, sliders, toggle switches, and pull-down menus to control your program. You import these
capabilities with this statement: from visual.controls import * Importing from visual.controls makes available all
Visual objects plus the controls module. To use the control features, you create a special controls window and add
control objects to that window, specifying what actions should take place when the controls are manipulated. For
example, an action associated with a button might be the execution of a function to change the color of a Visual object.
After creating the controls, you repeatedly call an interact routine to check for user manipulation of the controls, which
trigger actions. For a detailed example, see the VPython demo program controlstest.py.
Here is a small example. All it does is change the button text when you click the button. The Python construction
"lambda:" is required for the controls module to have the correct context ("namespace") for calling the specified routine.

from visual.controls import *
 
def change(): # Called by controls when button clicked
    if b.text == 'Click me':
        b.text = 'Try again'
    else:
        b.text = 'Click me'
 
c = controls() # Create controls window
# Create a button in the controls window:
b = button( pos=(0,0), width=60, height=60, 
              text='Click me', action=lambda: change() )
while 1:
    c.interact() # Check for mouse; drive actions

Controls window
controls() Creates a controls window with the specified attributes, and returns it. For example, the following creates
a controls window 300 by 300, located at (0,400) with respect to the upper left corner of the screen, with 'Controlling
the Scene' in the title bar, and a range of 50 (window coordinates from -50 to +50 in x and y):

c = controls(title='Controlling the Scene',
     x=0, y=400, width=300, height=300, range=50)

Controls window parameters
x, y Position of the window on the screen (pixels from upper left)
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width, height Width and height of the display area in pixels.
title Text in the control window's title bar.
range The extent of the region of interest away from the center along each axis. The default is 100. The center of
a controls window is always (0,0).
display Every controls window has the attribute display; sphere(display=c.display) will place a sphere in the controls
window named c.
Control objects
After creating a controls window, you can create the following control objects that will appear in that window: button
A button to click.
slider Drag a slider to enter a numeric value graphically.
toggle Click on the handle to flip a toggle switch.
menu A pull-down menu of options.
Control objects have the following attributes:
pos Position of the control (center of button or toggle, one end of slider, upper left corner of menu title)
color Gray by default
width Width of button, toggle, or menu
height Height of button, toggle, or menu
axis Axis for slider, pointing from pos to other end (as for cylinder or arrow)
length Length of slider (in direction of axis)
min, max Minimum and maximum values for a slider
value Value of toggle (0 or 1), slider (depends on slider min and max), or menu (the text just selected on the menu).
The value of a toggle or slider (but not a menu) can be set as well as read. If you set the value of a toggle or slider,
the control moves to the position that corresponds to that value.
text Text to display on a button, or the header at the top of a menu
text0 Text to display below a toggle switch (associated with toggle value = 0)
text1 Text to display above a toggle switch (associated with toggle value = 1)
action Specify Python statement to be executed when a control is manipulated
items For menus only, list of menu items to choose from. Here is how to add a menu item to a menu named m1:

m1.items.append( ('Red', lambda: cubecolor(color.red)) )

This adds to the pull-down menu an item 'Red' which when chosen will pass the value color.red to the subroutine
cubecolor(). The Python construction "lambda:" is required for the controls module to have the correct context
("namespace") for calling the specified routine.

Reading/Writing Files

Reading and Writing Files
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A simple file dialog package is provided in the module visual.filedialog.
Here is how to get a file dialog display to choose a file to read, and then display the contents. The get_file() routine
lets you choose a file, and it returns a file descriptor, a pointer to the chosen file (here the file descriptor has been
named fd). If you cancel the file dialog display, get_file() returns None, which you should check for (the statements
just after the "if fd:" will be executed only if fd is not None). Using the file descriptor you can read the entire file as one
long string, or with readlines() you can read a list of lines of text, each ending with an end-of-line character ('\n').

from visual.filedialog import get_file
fd = get_file()
if fd:
    data = fd.read() # or fd.readlines()
    fd.close() # close the file (we're through with it)
    print data

To choose a file and write data to the chosen file, do this:

from visual.filedialog import save_file
fd = save_file()
if fd:
    fd.write("This is a test.\nThis is only a test.")
    fd.close() # close the file (we're through with it)

There are other file descriptor functions besides read(), readlines(), write(), and close(); see Python documentation.
For example, fd.name() is the name of the file associated with the file descriptor.
The examples shown above are sufficient for many tasks, but you can customize the file dialog display by specifying
parameters for the get_file() and save_file() functions, as shown here with their default values:

save_file(file_extensions=None, x=100, y=100,
          title="Save", mode='w', maxfiles=20)

get_file(file_extensions=None, x=100, y=100,
          title="Open", mode='rU', maxfiles=20)

For example, get_file(file_extensions=['.txt.', '.py']) will display only files ending in these extensions. The parameter
maxfiles specifies the maximum number of files to show on one page, which determines the height of the file dialog
display. The default "universal" file reading mode is 'rU' which converts different kinds of end-of-line markers for
Windows, Mac, and Linux files to the same standard character '\n'. The parameters x and y specify the pixel location
of the upper left corner of the file dialog display, measured from the upper left corner of the computer screen. The
title is displayed at the top of the window.

Vector operations

The vector Object
The vector object is not a displayable object but is a powerful aid to 3D computations. Its properties are similar to
vectors used in science and engineering. It can be used together with Numeric arrays. (Numeric is a module added
to Python to provide high-speed computational capability through optimized array processing. The Numeric module
is imported automatically by Visual.)

vector(x,y,z)

Returns a vector object with the given components, which are made to be floating-point (that is, 3 is converted to 3.0).
Vectors can be added or subtracted from each other, or multiplied by an ordinary number. For example,

v1 = vector(1,2,3)
v2 = vector(10,20,30)
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print v1+v2 # displays (11 22 33)
print 2*v1 # displays (2 4 6)

You can refer to individual components of a vector:
v2.x is 10, v2.y is 20, v2.z is 30
It is okay to make a vector from a vector: vector(v2) is still vector(10,20,30).
The form vector(10,12) is shorthand for vector(10,12,0).
A vector is a Python sequence, so v2.x is the same as v2[0], v2.y is the same as v2[1], and v2.z is the same as v2[2].

mag( vector ) # calculates length of vector 
mag(vector(1,1,1)) # is equal to sqrt(3)
mag2(vector(1,1,1)) # is equal to 3, the magnitude squared

You can also obtain the magnitude in the form v2.mag and the square of the magnitude as v2.mag2.
It is possible to reset the magnitude or the magnitude squared of a vector:

v2.mag = 5 # sets magnitude of v2 to 5 
v2.mag2 = 2.7 # sets squared magnitude of v2 to 2.7

You can reset the magnitude to 1 with norm():

norm( vector ) # normalized; magnitude of 1
norm(vector(1,1,1)) equals vector(1,1,1)/sqrt(3)

You can also write v1.norm(). For convenience, norm(vector(0,0,0)) is calculated to be vector(0,0,0).
To calculate the angle between two vectors (the "difference" of the angles of the two vectors).

v1.diff_angle(v2)

You can also write v1.diff_angle(v1,v2). For convenience, if either of the vectors has zero magnitude, the difference
of the angles is calculated to be zero.
There is a function for the cross product of two vectors, which is a vector perpendicular to the plane defined by vector1
and vector2, in a direction defined by the right-hand rule: if the fingers of the right hand bend from vector1 toward
vector 2, the thumb points in the direction of the cross product. The magnitude of this vector is equal to the product
of the magnitudes of vector1 and vector2, times the sine of the angle between the two vectors.

cross( vector1, vector2 )

There is a function for the dot product of two vectors, which is an ordinary number equal to the product of the
magnitudes of vector1 and vector2, times the cosine of the angle between the two vectors. If the two vectors are
normalized, the dot product gives the cosine of the angle between the vectors, which is often useful.

dot( vector1, vector2 )

You can also say vector1.cross(vector2) or vector1.dot(vector2)).
Rotating a vector
There is a function for rotating a vector:

v2 = rotate(v1, angle=theta, axis=(1,1,1))

The default axis is (0,0,1), for a rotation in the xy plane around the z axis. There is no origin for rotating a vector. You
can also write v2 = v1.rotate(angle=theta, axis=(1,1,1)). There is also a rotate capability for objects.
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Convenient conversion
For convenience Visual automatically converts (a,b,c) into vector(a,b,c), with floating-point values, when creating
Visual objects: sphere.pos=(1,2,3) is equivalent to sphere.pos=vector(1.,2.,3.). However, using the form (a,b,c)
directly in vector computations will give errors, because (a,b,c) isn't a vector; write vector(a,b,c) instead.
You can convert a vector vec1 to a Python tuple (a,b,c) by tuple(vec1) or by the much faster option vec1.astuple().

Graphs

Graph Plotting
In this section we describe features for plotting graphs with tick marks and labels. Here is a simple example of how
to plot a graph (arange creates a numeric array running from 0 to 8, stopping short of 8.1):

from visual.graph import * # import graphing features 
funct1 = gcurve(color=color.cyan) # a graphics curve
for x in arange(0., 8.1, 0.1): # x goes from 0 to 8
    funct1.plot(pos=(x,5.*cos(2.*x)*exp(-0.2*x))) # plot

Importing from visual.graph makes available all Visual objects plus the graph plotting module. The graph is
autoscaled to display all the data in the window.
A connected curve (gcurve) is just one of several kinds of graph plotting objects. Other options are disconnected dots
(gdots), vertical bars (gvbars), horizontal bars (ghbars), and binned data displayed as vertical bars (ghistogram;
see later discussion). When creating one of these objects, you can specify a color attribute. For gvbars and ghbars
you can specify a delta attribute, which specifies the width of the bar (the default is delta=1). For gdots you can
specify a shape attribute "round" or "square" (default is shape="round") and a size attribute, which specifies the
width of the dot in pixels (default is size=5).
You can plot more than one thing on the same graph:

funct1 = gcurve(color=color.cyan) 
funct2 = gvbars(delta=0.05, color=color.blue)
for x in arange(0., 8.1, 0.1): 
    funct1.plot(pos=(x,5.*cos(2.*x)*exp(-0.2*x))) # curve
    funct2.plot(pos=(x,4.*cos(0.5*x)*exp(-0.1*x)))# vbars

In a plot operation you can specify a different color to override the original setting:

mydots.plot(pos=(x1,y1), color=color.green) 

When you create a gcurve, gdots, gvbars, or ghbars object, you can provide a list of points to be plotted, just as
is the case with the ordinary curve object:

values = [(1,2), (3,4), (-5,2), (-5,-3)]
data = gdots(pos=values, color=color.blue)

This list option is available only when creating the gdots object.
Overall gdisplay options
You can establish a gdisplay to set the size, position, and title for the title bar of the graph window, specify titles for the
x and y axes, and specify maximum values for each axis, before creating gcurve or other kind of graph plotting object:

graph1 = gdisplay(x=0, y=0, width=600, height=150, 
          title='N vs. t', xtitle='t', ytitle='N', 
          xmax=50., xmin=-20., ymax=5E3, ymin=-2E3, 
          foreground=color.black, background=color.white)
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In this example, the graph window will be located at (0,0), with a size of 600 by 150 pixels, and the title bar will say
'N vs. t'. The graph will have a title 't' on the horizontal axis and 'N' on the vertical axis. Instead of autoscaling the
graph to display all the data, the graph will have fixed limits. The horizontal axis will extend from -20 to +50, and the
vertical axis will extend from -200. to +5000 (xmin and ymin must be negative; xmax and ymax must be positive.) The
foreground color (white by default) is black, and the background color (black by default) is white. If you simply say
gdisplay(), the defaults are x=0, y=0, width=800, height=400, no titles, fully autoscaled.
Every gdisplay has the attribute display, so you can place additional labels or manipulate the graphing window. The
only objects that you can place in the graphing window are labels, curves, faces, and points.

graph1 = gdisplay()
label(display=graph1.display, pos=(3,2), text="P")
graph1.display.visible = 0 # make the display invisible 

You can have more than one graph window: just create another gdisplay. By default, any graphing objects created
following a gdisplay belong to that window, or you can specify which window a new object belongs to:

energy = gdots(gdisplay=graph2.display, color=color.blue)

Histograms (sorted, binned data)
The purpose of ghistogram is to sort data into bins and display the distribution. Suppose you have a list of the ages
of a group of people, such as [5, 37, 12, 21, 8, 63, 52, 75, 7]. You want to sort these data into bins 20 years wide and
display the numbers in each bin in the form of vertical bars. The first bin (0 to 20) contains 4 people [5, 12, 8, 7], the
second bin (20 to 40) contains 2 people [21, 37], the third bin (40 to 60) contains 1 person [52], and the fourth bin
(60-80) contains 2 people [63, 75]. Here is how you could make this display:

from visual.graph import * 
.....
agelist1 = [5, 37, 12, 21, 8, 63, 52, 75, 7] 
ages = ghistogram(bins=arange(0, 80, 20), color=color.red) 
ages.plot(data=agelist1) # plot the age distribution
.....
ages.plot(data=agelist2) # plot a different distribution

You specify a list (bins) into which data will be sorted. In the example given here, bins goes from 0 to 80 by 20's.
By default, if you later say

ages.plot(data=agelist2)

the new distribution replaces the old one. If on the other hand you say

ages.plot(data=agelist2, accumulate=1)

the new data are added to the old data.
If you say the following,

ghistogram(bins=arange(0,50,0.1), accumulate=1, average=1)

each plot operation will accumulate the data and average the accumulated data. The default is no accumulation and
no averaging.
gdisplay vs. display A gdisplay window is closely related to a display window. The main difference is that a gdisplay
is essentially two-dimensional and has nonuniform x and y scale factors. When you create a gdisplay (either explicitly,
or implicitly with the first gcurve or other graphing object), the current display is saved and restored, so that later
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creation of ordinary Visual objects such as sphere or box will correctly be associated with a previous display, not the
more recent gdisplay.

factorial/combin

The factorial and combin Functions

from visual import *
from visual.factorial import * # import after visual
print factorial(4) # gives 24 
print combin(10,2) # gives 45

Note: To avoid confusion between the module named "factorial" and the function named "factorial", import the factorial
module after importing the visual module itself.
The factorial function factorial(N) is N!; 4! is (4)(3)(2)(1) = 24, and 0! is defined to be 1.
The combin function is combin(a,b) = a!/(b!*(a-b)!).
A major use of these functions is in calculating the number of ways of arranging a group of objects. For example, if
there are 5 numbered balls in a sack, there are factorial(5) = 5! = 5*4*3*2*1 = 120 ways of taking them sequentially
out of the sack (5 possibilities for the first ball, 4 for the next, and so on).
If on the other hand the 5 balls are not numbered, but 2 are green and 3 are red, of the 120 ways of picking the balls
there are 2! indistinguishable ways of arranging the green balls and 3! ways of arranging the red balls, so the number
of different arrangements of the balls is combin(5,2) = 5!/(3!*2!) = 10.
Logically, the combin function is just a combination of factorial functions. However, cancellations in the numerator
and denominator make it possible to evaluate the combin function for values of its arguments that would overflow the
factorial function, due to the limited size of floating-point numbers. For example, combin(5,2) = 5!/(3!*2!) = (5*4)/2
= 10, and we didn't have to evaluate 5! fully.

Visual license

The Visual library is Copyright (c) 2000 by David Scherer.
All Rights Reserved
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of David Scherer not be used in
advertising or publicity pertaining to distribution of the software without specific, written prior permission.
DAVID SCHERER DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL DAVID SCHERER BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.
The following notice applies to the CXX library, which is linked into cvisual.dll:
*** Legal Notice for all LLNL-contributed files ***
Copyright (c) 1996. The Regents of the University of California. All rights reserved.
Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, provided
that this entire notice is included in all copies of any software which is or includes a copy or modification of this
software and in all copies of the supporting documentation for such software.
This work was produced at the University of California, Lawrence Livermore National Laboratory under contract no.
W-7405-ENG-48 between the U.S. Department of Energy and The Regents of the University of California for the
operation of UC LLNL.
DISCLAIMER
This software was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately-
owned rights. Reference herein to any specific commercial products, process, or service by trade name, trademark,
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manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California, and shall not
be used for advertising or product endorsement purposes.
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